

The Role of R&D in the Age of Renewable Energy

Presented to the Institute for Human and Machine Cognition

Dr. Dan E. Arvizu Laboratory Director

September 9, 2008

Energy Solutions Are Enormously Challenging

Must address all three imperatives

Mounting Evidence

Mounting Evidence

U.S. Energy Consumption and the Role of Renewable Energy

Source: Energy Information Administration,

Annual Energy Outlook 2008 (revised early release), Table 1

What Are the Major Renewables?

U.S. Electricity Net Generation

Net generation for 2006 = 3814 TWhr UCb

Source: EIA Annual Energy Review 2007, AEO 2008

U.S. Renewable Energy Contributions

Percent of Total Electric Generating Capacity

Setting the Bar Higher – Gigawatt-Scale Renewables

Solar Vision
10% U.S. electricity
by 2025

Wind Vision
20% U.S. electricity
by 2030

Energy Independence & Security Act 2007
36 billion gallons of renewable fuels by 2022

Requires investment in new infrastructure:

- Overall in U.S. = \$2 trillion
- Worldwide = \$22 trillion
 - Biofuels
 - Wind > \$2 trillion (est.)
 - Solar

Getting to "Speed and Scale" – Key Challenges

Implementing Renewable Gigawatts at Scale

- Cost of renewable electricity
- Performance and reliability
- Infrastructure robustness and capacity
- Dispatchability of renewables

Displacement of Petroleum-Based Fuels

NREL 139-1

- Cellulosic ethanol cost
- · Life cycle sustainability of biofuels
- Fuels infrastructure, including Codes/Standards
- Demand and utilization, including intermediate blends

Reducing Energy Demand of Buildings, Vehicles, and Industry

NREL 196-1

- Coordinated implementation of model building codes
- Market does not value efficiency
- Cost of energy efficient technologies
 - Performance and reliability of new technologies

Dynamic External Environment is Accelerating Speed and Scale of Renewable Energy

U.S. Renewable Electricity Installed Nameplate Capacity

Sources: Chalk, AWEA, IEA, NREL, EIA, GEA

New Investment 2007 and Average Growth 2005-07 – By Sector

Note: VC/PE, Public Markets and Asset Finance only. Excludes re-investment adjustment

Source: New Energy Finance

Translational Science is Key to Speed and Scale

Systems Biology

Computational Science

Photoconversion

Connecting new discoveries, via applied research, to the marketplace

Discovery Research

Use-inspired Basic Research

Purpose-Driven Exploratory Research

& Development

Applied Research Technology Maturation & Deployment

Managing the Lab-to-Market Interface

- Partner with industry, universities, other federal agencies, international community and state/local governments to deploy clean energy solutions
 - Hawaii training, DuPont CRADA, Xcel/SolarTAC
- Contribute timely and definitive analyses on technology, policy, and market issues that impact commercialization
- Provide investment community with credible information (industry growth forums)

Technology Development Programs

Efficient Energy Use

- Vehicle Technologies
- Building Technologies
- Industrial Technologies

Renewable Resources

- Wind and water
- Solar
- Biomass
- Geothermal

Energy Delivery and Storage

- Electricity
 Transmission and
 Distribution
- Alternative Fuels
- Hydrogen Delivery and Storage

Global cost curve of GHG abatement opportunities beyond business as usual

Source: Vattenfall AB, Global Mapping of Greenhouse Gas Abatement Opportunities, 1/07

Buildings Matter

Buildings construction/renovation contributed 9.5% to US GDP and employs approximately 8 million people. Buildings' utility bills totaled \$370 Billion in 2005.

Source: Buildings Energy Data Book 2007

Buildings

Status U.S. Buildings:

- 40% of primary energy
- 72% of electricity
- 38% of carbon emissions

DOE Goal:

- Cost effective, marketable zero energy buildings by 2025
- Value of energy savings exceeds cost of energy features on a cash flow basis

NREL Research Thrusts

- Whole building systems integration of efficiency and renewable features
- Computerized building energy optimization tools
- Advanced HVAC and envelope technologies
- Building integrated PV

Neutral Cost Point Example Greensburg, Kansas

(2000 ft2, 2-story, 16% window to floor area ratio, unconditioned basement)

Plug-In Hybrid Electric Vehicles (PHEV)

Status:

- PHEV-only conversion vehicles available
- OEMS building prototypes
- NREL PHEV Test Bed

NREL Research Thrusts

- Energy storage
- Advanced power electronics
- Vehicle ancillary loads reduction
- Vehicle thermal management
- Utility interconnection
- Vehicle-to-grid

Key Challenges

- Energy storage life and cost
- Utility impacts
- Vehicle cost
- Recharging locations
- Tailpipe emissions/cold starts
- Cabin heating/cooling
- ~33% put cars in garage

Challenges for Plug-Ins

- Improving batteries
 - Cost
 - Calendar and cycle life
 - Safety of Li-Ion
 - Cold temperature performance
 - Volume and packaging
- Reducing power electronics cost and volume
- Developing efficient chargers
- Standardizing plugs for charging
- Avoiding negative peak time charging impacts

PHEV Benefits Tied to Usage Pattern

Science at the Leading Edge of Energy Efficiency Research

Significant improvements are anticipated through:

- Super-strong lightweight materials
- Smart roofs
- Solid state lighting
- Superconducting

New discoveries will have broad impact on daily life

Source: Oak Ridge National Laboratory

Past Investments Have Dramatically Reduced Costs of Supply Options

Maxmizing Impact

Wind

Today's Status in U.S.

- 20,050 MW installed
- Cost 6-9¢/kWh at good wind sites*

DOE Cost Goals

- 3.6¢/kWh, onshore at low wind sites by 2012
- 7¢/kWh, offshore in shallow water by 2014

Long Term Potential

20% of the nation's electricity supply

Source: U.S. Department of Energy, American Wind Energy Association

^{*} With no Production Tax Credit Updated September 2008

Installed Wind Capacity

Integrating Wind Into Power Systems

New studies find integrating wind into power systems is manageable, but not costless

Date		Wind	Cost (\$/MWh)					
	Study	Capacity Penetration	Regulation	Load Following	Unit Commitment	Gas Supply	TOTAL	
2003	Xcel-UWIG	3.5%	0	0.41	1.44	na	1.85	
2003	We Energies	4%	1.12	0.09	0.69	na	1.90	
2003	We Energies	29%	1.02	0.15	1.75	na	2.92	
2004	Xcel-MND0C	15%	0.23	na	4.37	na	4.60	
2005	PacifiCorp	20%	0	1.6	3	na	4.60	
2006	CA RPS (multi-year)	4%	0.45*	trace	na	na	0.45	
2006	Xcel-PSCo	10%	0.2	na	2.26	1.26	3.72	
2006	Xcel-PSCo	15%	0.2	na	3.32	1.45	4.97	
2006	MN-MISO 20%	31%	na	na	na	na	4.41**	

 ³⁻year average

Key Results from Major Wind Integration Studies Completed 2003-2006

^{**} highest over 3-year evaluation period

Some Additional Reserves May Need to be Committed

Reserve Category	Base		15% Wind		20% Wind		25% Wind	
	MW	%	MW	%	MW	%	MW	%
Regulating	137	0.65%	149	0.71%	153	0.73%	157	0.75%
Spinning	330	1.57%	330	1.57%	330	1.57%	330	1.57%
Non-Spin	330	1.57%	330	1.57%	330	1.57%	330	1.57%
Load Following	100	0.48%	110	0.52%	114	0.54%	124	0.59%
Operating Reserve Margin	152	0.73%	310	1.48%	408	1.94%	538	2.56%
Total Operating Reserves	1049	5.00%	1229	5.86%	1335	6.36%	1479	7.05%

Source MN DOC

Estimated Operating Reserve Requirement for MN BAs – 2020 Load

Marine Energy

Ocean Power Technologies
Concept for 1.5-MW Wave Farm, Reedsport OR

- Companies developing marine energy increased from 35 to 81 from 2003-6
- Wave and tidal devices dominate
- Most companies are small and under capitalized
- Most are at the conceptual or scale model testing phase
- Few are in long term, full scale ocean testing phase
- No companies are in commercial production
- Federal funding: FY2008 at \$10M

Marine Energy Technical Challenges

- Resource is dispersed regionally among a few states and has not yet been fully quantified
- Regulatory barriers are impeding technology development – projects face old hydro permitting schemes
- Technology is not proven; there is no basis for evaluating different concepts.
- Environmental sensitivities & competing use impacts need to be quantified

Hydrokinetic Production Potential (TWh/yr)

Solar – Photovoltaics and CSP

Status in U.S.

PV

- 824 MW installed capacity
- Cost 18-23¢/kWh

CSP

- 419 MW installed capacity
- Cost 12¢/kWh

Potential:

PV

- 11-18¢/kWh by 2010
- 5-10 ¢/kWh by 2015

CSP

8.5 ¢/kWh by 2010 6 ¢/kWh by 2015

Source: U.S. Department of Energy, IEA Updated January 28, 2008

NREL Research Thrusts PV

- Higher performance cells/modules
- New nanomaterials applications
- Advanced manufacturing techniques

CSP

- Low cost high performance storage for baseload markets
- Advanced absorbers, reflectors, and heat transfer fluids
- Next generation solar concentrators

Geothermal

Today's Status in U.S.

- 2,800 MWe installed, 500 MWe new contracts, 3000 MWe under development
- Cost 5-8¢/kWh with no PTC
- Capacity factor typically > 90%, base load power

DOE Cost Goals:

- <5¢/kWh, for typical hydrothermal sites
- 5¢/kWh, for enhanced geothermal systems with mature technology

Long Term Potential:

 Recent MIT Analysis shows potential for 100,000 MW installed Enhanced Geothermal Power systems by 2050, cost-competitive with coalpowered generation

NREL Research Thrusts:

- Analysis to define the technology path to commercialization of Enhanced Geothermal Systems
- Low temperature conversion cycles
- Better performing, lower cost components
- Innovative materials

Biofuels

Current Biofuels Status

- Biodiesel 165 companies; 1.85 billion gallons/yr capacity¹
- Corn ethanol
 - 134 commercial plants²
 - 7.2 billion gal/yr. capacity²
 - Additional 6.2 billion gal/yr planned or under construction
- Cellulosic ethanol (current technology)
 - Projected commercial cost ~\$3.50/gge

Key DOE Goals

- 2012 goal: cellulosic ethanol \$1.31/ETOH gallon or ~\$1.96/gge
- 2022 goal: 36B gal Renewable Fuel; 21B gal "Advanced Renewable Fuel" – 2007 Energy Independence and Security Act
- 2030 goal: 60 billion gal ethanol (30% of 2004 gasoline)

NREL Research Thrusts

- The biorefinery and cellulosic ethanol
- Solutions to under-utilized waste residues
- Energy crops

Sources: 1- National Biodiesel Board

2 - Renewable Fuels Association, all other information based on DOE and USDA sources

Cellulosic Ethanol Cost Goals

DOE efforts aim to trigger a substantial cost decline in the production of cellulosic ethanol

Feedstock Engineering

- Increase crop production (agronomics and plant engineering)
- Increase composition of desirable polysaccharides (cellulose)
- Decrease composition of undesirable polymers (lignins)

NREL "Corn Stem Tour"

Transportation Fuels

Renewable Electricity at Scale

Focus on Key Barriers

Grid integration/Interconnection Technology

Reliable Operation at High Penetration

An Integrated Approach is Required

Renewable Portfolio Standards

Energy Efficiency Resource Standards

Strategic Energy Analysis

Technical and economic analyses to advance understanding of technology value in context of dynamic markets, policies, energy resources/loads, and infrastructure.

Impact Analysis

Analyze benefits and impacts of programs, portfolios, and policy options

System

Analyze system performance and technology interfaces in the context of the overall system

Technology/Component

Analyze technology and component performance and cost

Resource

Assess resource availability and characteristics

Increasing Attention to Carbon Mitigation Potential Analysis

